AACR 2022 Poster #3342

Discovery of potent and selective next-generation EGFR inhibitors with activity against single, double, and triple mutant EGFR variants including T790M and C797S

Wei-Sheng Huang, Sara Nadworny, Sen Zhang, Narayana Narasimhan, Charles J. Eyermann, David C. Dalgarno, Victor M. Rivera, William C. Shakespeare. Theseus Pharmaceuticals, Inc., Cambridge, MA

Introduction

- EGFR activating mutations are observed in 10-50% of NSCLC patients and the common mutations (L858R [L] and exon 19 deletions [D]) are initially sensitive to first-, second-, and third-generation EGFR inhibitors (eg erlotinib [1G], afatinib [2G], and osimertinib [3G])^{1,2,3}.
- However, on-target resistance is observed in a substantial percentage of patients, with T790M (T) and C797S (C) observed most frequently (post-1G/2G and post-3G, respectively) 4, 5.

Problem

EGFR mutational heterogeneity increases during treatment with 1G/2G and 3G inhibitors

Inhibition of wild type (WT) EGFR causes doselimiting toxicities

EGFR-mutant NSCLC commonly metastasizes to Ability to penetrate the central nervous system the brain

Addressing off-target resistance mechanisms requires combination with a non-EGFR inhibitor

Our Solution

Potent pan-EGFR mutant activity (i.e., activity against single-, double-, and triplemutant variants)

Selectivity over WT EGFR

Single compound likely more combinable

Compounds: All compounds were synthesized internally or purchased from Selleck or MedChemExpress. Kinase assay: Kinase inhibition assays to determine IC₅₀s against EGFR mutant variants were conducted with 3-fold serial

dilutions using ATP concentrations at their respective Km.

In vitro cellular viability assay: Cellular potency was evaluated in Ba/F3 cells expressing EGFR mutant variants. Parental Ba/F3 cells were cultured in the presence of 10 ng/mL IL3. Cell viability (IC₅₀) was assessed using CellTiter Glo (Promega)

In vitro cellular kinase activity: Potency against WT EGFR was assessed by measuring levels of EGFR phosphorylated at Tyr1068 (pEGFR) in EGFR-amplified A431 cells stimulated with 25 ng/mL EGF.

In vivo efficacy: Anti-tumor activity was evaluated in Ba/F3 cells expressing EGFR mutant variants. When tumor sizes reached ~130 mm³, mice were randomized and sorted by tumor volume, and vehicle or compound was administered by oral gavage once daily for 10 days. All dose levels were well-tolerated with no adverse clinical signs observed.

Pharmacokinetics (PK) /pharmacodynamics (PD): Tumor-bearing mice were treated with a single dose of vehicle or compound. Tumor samples were collected post-dose and analyzed by AlphaLisa (PerkinElmer) and western blot. Compound concentrations in plasma were determined by LC-MS/MS.

Measure of CNS penetrance: Rats were dosed orally at 10 mg/kg/day. After the 4th dose, blood was collected and brain was harvested from 2 rats at multiple time points. Compound concentrations in plasma and brain homogenates were determined by

Results

Cmpd 1 and Cmpd 2 potently inhibit EGFR single-, double-, and triplemutant variants in biochemical assays

	EGFR kinase activity, IC ₅₀ (nM)			
Compound	L	LT	LTC	
Erlotinib	0.1	207	345	
Gefitinib	0.1	240	612	
Osimertinib	0.4	0.2	360	
Cmpd 1	3.4	0.1	0.3	
Cmpd 2	0.6	0.1	0.7	

Cmpd 1 and Cmpd 2 potently inhibit all major EGFR single-, double-, and triple-mutant variants in cellular assays

Selectivity over WT EGFR exceeds that of erlotinib and gefitinib

Ba/F3 viability, IC ₅₀ (nM)						A431 pEGFR IC ₅₀ (nM)				
Compound	L	LT	LC	LTC	D	DT	DC	DTC	Parental	WT
Erlotinib	6.4	3039	12.9	>4000	3.7	>4000	6.7	>4000	>4000	42
Gefitinib	7.0	>4000	10.7	>4000	3.8	>4000	15.5	>4000	>4000	33
Osimertinib	3.0	2.6	1010	1684	1.5	3.4	1234	1234	1563	327
Cmpd 1	13.9	3.4	8.9	7.7	5.6	6.8	4.9	2.3	1213	202
Cmpd 2	10.0	2.4	11.9	7.9	4.6	4.0	6.9	2.4	3159	136
	10000)-1							■ WT	

Cmpd 1 is highly efficacious in aggressive Ba/F3 tumor models expressing EGFR single-, double-, and triple-mutant variants at well-tolerated doses

A single dose of Cmpd 1 leads to sustained inhibition of EGFR signaling in a Ba/F3 triplemutant model (DTC)

Cmpd 2 has superior efficacy in Ba/F3 tumor models expressing EGFR double- or triple-mutant variants at well-tolerated doses

Cmpd 2 penetrates the CNS and has favorable drug-like properties

- Rat brain:plasma ratio predicts CNS activity in patients
- Favorable ADME and large animal PK properties predict good human PK
- High degree of kinome selectivity: S-score (50) = 0.07 (23/330 kinases inhibited by >50% at 0.1 µM)

Compound	Brain:Plasma Ratio	Target	CNS-Active in Patients
Cmpd 2	0.30	EGFR	N/A
Erlotinib	0.24	EGFR	Yes ^{6,7}
Osimertinib	11	EGFR	Yes ⁷
Lorlatinib	0.54	ALK	Yes ⁸
Brigatinib	0.04	ALK	Yes ⁹
Avapritinib	0.67	PDGFRA	Yes ¹⁰

Conclusions

- Data strongly support that pan-variant EGFR inhibition, with selectivity over WT, is achievable with a single molecule, potentially resulting in greater safety and combinability and a streamlined development path
- Cmpds 1 & 2 both have pan-EGFR inhibitory profiles with activity against mutant variants resistant to 1st, 2nd, and 3rd generation EGFR inhibitors
 - Cmpd 1
 - Potent cellular activity with good selectivity over WT EGFR (15- to 88-fold)
 - Significant anti-tumor efficacy in models harboring both activating and resistance mutations
 - Cmpd 2
 - Demonstrated tumor regressions against variants associated with both 1st and 2nd line osimertinib clinical failure - i.e., C797S double (LC) and triple (DTC) mutants
 - Demonstrated brain permeability expected to be active against CNS metastatic disease
- Additional studies to further characterize lead compounds are underway

References

- Rosell R et al., Lancet Oncol. 2012; 13:239-246
- Sequist L et al., J Clin Oncol. 2013; 20;31:3327-3334
- Soria J et al., N Engl J Med 2018; 378:113-125. 4. Jänne P et al., N Engl J Med 2015;372:1689-1699
- 5. Leonetti A et al., British Journal of Cancer 2019; 121:725–737.
- 6. Jung H et al., Transl Lung Cancer Res. 2020; 9:1749–1758. 7. Reungwetwattana T et al., J Clin Oncol. 2018; 36: 3290-3297.
- 8. Shaw A et al., Lancet Oncol. 2017; 18:1590-1599. 9. Camidge DR et al., J Clin Oncol. 2018; 36: 2693-2701.
- 10. George S, et al., Oncologist. 2021; 26: e639-e649.

